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INTRODUCTION

Over the past few vears, several field experiments have been performed using 105-mm (refs 1-3)
and 120-mm (refs 4,5) cannons having perforated muzzle brakes. Significant differences in weapon
impulse and gasdynamic efficiency have been reported in tests using the same 10S-mm cannon-brake
system but different measurement tcchniques. In the 120-mm experiments, efficiencies considerably above
those for the 10S-mm cannon have been reported, even though the latter has a larger brake. Because the
efficiency is a measure of the load produced by the brake, these inconsistencies introduce some uncertainty
as to the stresses generated within the brake. In the present study, five brakes, geometrically simmlar to
those used in the field experiments, were tested in the laboratory using a 20-mm cannon. The purpose
was to provide a common basis for comparing the performance of the brakes using the standard
parameters of gasdynamic efficiency for impulse and the overpressure ratio for the blast field.

The gasdynamic efficiency is a dimensionless measure of the capacity of a muzzie brake 10 reduce
weapon impuise. Experimental (refs 6-8) and analytical studies (refs 6.9) of conventional batfle brakes
have shown that this parameter depends primarily on the brake geometry, and that it is rather inseasitive
1o weapon caliber and only mildly dependent upon ballistics, primarily through the propeilant gas Mach
number at projectile exit. As a result, brake efficiency has often been determined using scaled models in
the laboratory where accurate measurements of impuise are more easily made (refs 6-3,10,11).

Laboratory (refs 12-16) and numerical (refs 17-19) studies have also becn made tor perforated
muzzle brakes. For these devices, the gasdynamic efficiency is primarily dependent on the vent area ratio,
(total vent area to canpon bore area), and mildly dependeat on the vent aspect ratio (height 1o diameter)
and angle of inclination of the vent axis with respect to the cannon axis. Inseasitivity to weapon caliber
and ballistics is also characteristic {ref 19).

A second gasdypamic parameter, the overpressure ratio, is used to measure the modifications ot
the blast field that result when a brake is added to a cannon. [t is defined as the ratio of the peak
free-field overpressures at a particular location with and without the brake. Its sensitivity to geometry and
ballistics is examined here for pertorated brakes.

THE LABORATORY EXPERIMENT

The experiment was performed using the 20-mm cannon facility at the Ballistic Research
Laboratory. The cannon is threaded at the muzzle to accept the six extensions shown schematically in
Figure 1 (scaled drawings may be found in Appendix A). The first four were scaled 1o the 120-mm
experiments (refs 4,5), while the last two refer to the 105-mv: experiments (refs 1-3). The bare muzzle
extension was used as a reference for both sets of brakes even though the wall thickness was scaled to the
120-mm cannon. This tube dimension is not expected to have a measurable effect on the blast tield.

The "120-mm standara’ brake has eight rows of circular vents. Each row has twelve vents
uniformly spaced around the tube circumference. The four rows nearest the breech have smaller diameter
venis based on stress considerations (refs 19,20). The '120-mm modified’ brake is identical to the standard
brake excent that the vents are raked back ten degreec t. provide greater impuise reduction.

The *120-mm side vent’ brake has nine rows of vents. Each row has only ten vents--five on each
side of the vertical axis of the tube. The purposc of this arrangement is to reduce obscuration by
directing the gas to the sides of the weapon. The vents are drilled at angles such that the vent area is
more uniformly distributed around the tube interior 1., provide a symmetrical pressure dictribution.
Large circumferential pressure gradients can damage finned projectiles (ref 1. All three 120-mm brakes
have the same tctal vent area based on the cross-sectional area perpendicular to the vent axis.




The '105-mm standard’ brake has twelve rows of circular vents. Each row has twelve vents placed
uniformly around the tube circumference. The "105-mm elliptic’ brake is similar except that each row has
six elliptical vents. Both brakes have the same total vent area.

All of the extensions have the same length. In practice, vented tubes have tc be somewhat longer
to produce the desired projectile velocity. However, for the 20-mm cannon, the addition was only a few
centimeters and was omitted to facilitate comparison of the blast fields.

The ballistic data for the cannon are listed in Table 1. The projectile base position refers to the
length of the cannon without an extension. The conditions at this instant are known from earlier
experiments (ref 12).

Table 1. Ballistic Data for the Laboratory Experiment

e e = I
Projectile base positon, cm 143.00
Projectile velocity, m/sec 1045.0
Projectile base pressure, atm 287.0
Propellant mass, kg 0.0389
Projectile mass, kg 0.0980
Bore diameter, cm 2.0
Gun chamber volume, cm’ 41.7
Specific heat ratio 1.25
Molecular weight 22.3
Covolume, cm’ kg 982.0 ~

THE GASDYNAMIC SCALING PARAMETERS

The gasdynamic efficiency, B3, of a brake is defined as
B = U1, ~MV) ()

where I, and L, are the weapon impuises with and without a brake, respectively, M is the projectiie mass,
and V, is the bare muzzle velocity. To appreciate the significance of 3 in cannon design, it is belpful to
rewrite this expression in terms of the internal ballistics and brake geometry using control volume analysis
(refs 1,9).

Summing the pressure forces acting on a controi volume drawn coincident with the interior and
exterior surfaces of the tube, including the vent surfaces, gives the following exnression for the
impulse, I, imparted tn the cannon:




I = A[ (P,-P)at - f; [ P st 2

The first term is the integral of the unbalanced pressure forces acting upon the tube interior and
exterior surfaces. P, is the time-dependent breech pressure of the propellant gas, P, is atmospheric
pressure, and A is the bore area. The second term is the sum of the integrais of the pressure forces
generated by the N individual vents. P, is the time- and position-dependent pressure acting upon the vent
surface S, and n_ is the axial component of the unit vector normal to and pointing away from the vent
surface element dS,. Equation (2) applies to a cannon with or without a brake.

For a control volume drawn coincident with the exterior surface of the tube and extending across
the muzzie exit plane, the impulse, L., for a cannon having no brake is

IW

=MV, + Afoa(Pe—P;pevf)dt (3)

The first term is the momentum of the projectile as its base passes through the muzzie exit plane.
The second term is the integral of the thrust produced by the propellant gas as it is discharged through
this plane with pressure P,, density p,, and velocity v.. P, is atmospheric pressure.

Using these results in Eq. (1), the expression for 8 becomes

N
A fo"(PM -P, )dt + g [ fSnPnndendt

AP+ YMI(L-1p )P, dt

(4)

where the subscripts 'w’ and 'wo’ indicate which variables apply to the brake and the bare muzzie cases,
respectively. The denominator was rewritten in terms of Mach number, M,, using the expression for
soundspeed in an Abel gas, namely, ¢, = y P,/(p.(1-n p.)) where y and 7 are the specific heat ratio and
covolume of the propellant gas, respectively.

The first term in the numerator of Eq. (4) requires some explanation. For the cannons of interest
here, a region of supersonic flow develops immediately behind the projectile as it acceleratesin the tube.
The sonic point at the upstream boundary of this region also moves downstream during the ballistic cycle.
When it reaches the brake entrance, an ¢xpansion wave starts traveling toward the breech. In the bare
muzzle case, this event is delayed until the sonic point reaches the muzzie. Therefore, for cannons of
equal length, as in the experiments, the expansion wave arrives at the breech earlier in the brake case,
causing the pressure P, to fall relative to P, and the integrand (Py,,-P.,) to become positive.
Calculations with the impulse code (refs 18,19) show that this term generaily contributes about two percent
to the numerator. For a baffle hrake, this term is zero, because the brake is located downstream oi the
muzzle in the supersonic exhaust flow and cannot influence the flow in the barrel.

According to Eq. (4), B is a function of the cannon ballistics and the brake geometry. However,
the ballistics tend to influence the numerator and denominator in the same way. For example, each
integrand is proportional to the local tube pressure, including the vent pressure distribution, P,, so the
absolute pressure level prevailing in the cannon is not a dominant factor. Similarly, the Mach number at
the brake entrance affects the load generated by the brake but in a manner similar to the way the muzzle
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exit Mach number affects the thrust function in the denominator. This leaves the brake geometry, through
the area function, S,, as the principal determinant of 8. For geometrically similar brakes, S, is directly
proportional to the bore area, A, which also appears as a factor in the other terms 1n the equation, so 3
should be independent of cannon caliber and only modestly influenced by the ballistics. Calculations for
baffle brakes (ref 9) and perforated brakes (ref 19) support this conclusion.

The second parameter of interest is the overpressure ratio, P, defined as
PI = (P, ,-P)/(P,-P) (5)

where the numerator and depominator are the peak free-field overpressures at a given location with and
without a brake. As with B, both terms are similar functions of the cannon ballistics, so the ratio should
depend only upon brake geometry and, hopefully, be the same for geometrically similar cannons. For
baffle brakes, Baur and Schmidt (ref 11) have found that the overpressure scales for caanons of different
caliber, but the scaling factor includes some ballistic parameters in addition to the tube diameter.
However, they also found that the ratio in Eq. (5) depends oniy upon the angular location in the field and
B. and not upon the scaled distance from the muzzle. The ballistics is a factor oniy through its more
modest effect on 8. This is explored below for perforated brakes.

The principal virtue of using these parameters to characterize brake performance is that
information obtained with one type of ammunition or one caliber cannon can be used to predict
performance in another circumstance. Of course, this must always be tested when data become availabie,
as in the present case.

VELOCITY AND IMPULSE DATA

In the laboratory experiment, the weapon impuise and projectile velocity were measured for each
shot. The data are tabulated in Appendix C and summarized in Table 2. Each value is the average of
six or more rounds.

Table 2. Summary of Brake Data

[P S

Extension Velocity Impuise Vent Area B

(mysec) {nt-sec) Ratio (“%)

bare muzzie 1059.1 150.4 -

120-mm standard 1059.5 126.5 3.679 51.1

120-mm modified 1056.4 1243 3.679 359

120-mm side vent 1059.1 125.6 3.679 33.0

105-mm standard 1059.7 121.4 4.777 62.1

105-mm etlliptic 1061.9 122.9 4.777 58.9

Since each extension was the same length, the velocities for the brakes should be lower than the
bare muzzle value because less work can be done on the projectile by the gas as it expands to lower
pressures in the vented region. This pattern is not strictly followed in Table 2, possibly because the round-




to-round deviation, found to be plus or minus 10 my/sec (see Table C3 in Appendix C), exceeds the small
variations between brakes. The velocity loss due to venting would appear to be modest.

The vent area ratio, defined as the ratio of the total vent flow area to cannon bore area, has been
found to be the dominant factor affecting perforated brake efficiency (refs 12-15,19). The data in the
last two columns of Table 2 are consistent with this observation. Turning the flow an additional ten
degrees with the 120-mm modified brake increased the efficiency, as expected. Somewhat surprising,
however, is the increase in efficiency produced by the side vent design and the decrease found with the
elliptic design since both had the same vent area ratio as their standard couaterparts.

Plostins and Clay (ref 1) and Gast (ref 3) fired the M490 round from [0S-mm cannons having a
brake geometrically similar to the 105-mm standard brake used here. The principal difference between the
two field experiments was in the measurement of impulse. Plostins and Clay determined impuise
indirectly from an analysis of the recoil cylinder pressure and cannon displacement histories. Gast
measured the weapon impulsc directly at the trunnions with a load cell arrangement. Their results are
given in Table 3.

Table 3. Field Experiment Data

e R RN ——
Cannon Lo L Lok B
(kat-sec) {knt-sec) {kat-sec) {(“?)
Plostins and Clay 23.0 15.6 7.4 67.0
(M490. tube 3)
code prediction 19.7 15.0 4.7 59.7
Gast 19.3 15.8 4.0 51.7
(M450, 144 vents)
code prediction 19.8 15.1 4.7 60.2
|

For comparison, predictions from an impulse code (ref 19) are aiso listed in Table 3. The ballistic
input for the code was taken from Table 4 of Reference 1. The cannon used by Gast was a few calibers
longer than that used by Plostins and Clay, which is why there is a set of predictions for each experiment.
The longer tube produces slightly higher impulses, as would be expected.

The large differences in measured brake impulse in column 3 of Table 3 imply considerable
uncertainty as to the loads and stresses generated by the brake. The calculated efficiencies lie between the
measured values and are in good agreement with the laboratory measurement of 62.1 percent for the "105-
mm standard brake’ given in Table 2.

Savick (ref 2) and Savick and Baur (ref 4) used a 120-mm cannon with brakes geometrically
similar to those used here and found efficiencies that ranged from 77 to 114 perceat, well above the 30 to
55 percent range in Table 2. Since the vent area ratio is significantly less than that of the 105-mm brake,
the results seem high. The instrumentation used to determine the weapon impulse was being reviewed as
this report was being written.




The following equation was given by Carofano (ref 19) to relate

B = 0273 A, (1.-0.18 L/D)(1.-0.14 A, + 0.01 A,) (6)

gasdynamic efficiency to the vent area ratio, Ay, and the vent aspect ratio, L/D, where L is the tube wall
thickness and D is the vent diameter. It applies to axisymmetric brakes having circular vents drilled at
ninety degrees to the tube axis. For brakes with vents of differeat diameters, an average value of D is
computed from the expression

N N
D =Y DAY 4, 7

ne] =]

where N is the number of vents, and D, and A, are the diameter and area of the nth vent, respectively.
Each diameter is weighted by the vent area in the belief that a large vent contributes more to brake
performance than a small vent.

Equation (6) is plotted in Figure 2, along with the experimentai data for seven of Dillon's 20-mm
brakes (ref 12) (see also Tabie IT of Reference 19), the two standard brakes listed in Table 2, and the full-
scale 105-mm cannoans in Table 3. The plot is interesting because Eq. (6) is actually a fit of computations
for a 120-mm cannon (ref 19), yet it compares well with the experimental data for the smaller cannons.

The impulse code (ref 19) is used at Benet to predict the axial and radial load distributions for
use as input to a finite element calculation of the stress field in the brake. Based on the discussion
above, there seems little reason to question the use of the code for this purpose. What would be desirable
is a direct measurement of the transient axial load produced by a brake. Plostins and Clay (ref 1)
measured the axial strain but not the circumferential strain. Both are needed to determine the axial load.

THE SHADOWGRAPHS

A shadowgraph was taken for most of the rounds fired. Those for the bare muzzle extension and
the 105-mm standard brake are given in Appendix B of Reference 21. The remainder may be found in
Appendix B of this report. A few are shown here to aid in the discussion of the free-field overpressure
data to be presented below.

As the projectile accelerates in the tube from rest, a shock wave forms ahead of it. The column of
air set into motion by the shock is called the precursor flow. The spark light source was triggered,
after a preset time delay, by the arrival of the precursor shock at a microphone placed near the muzzie.
After passing through the disturbance, the light was diffracted by a large Fresnel lens into the camera.

The discussion begins with a sequence of six shadowgraphs, one of each extension, taken at
successively larger time delays. The purpose is 1o illustrate distinguishing features of the individual
brakes as well as the general flow field development.

The shadowgraph in Figure 3 was taken as the projectile base was emerging from the bare muzzle
extension. Most of the disturbance in this picture is the precursor flow. Following projectile exit, the
propellant gas flow commences and drives the main blast wave which, at this instant, is just starting to
form near the muzzle. The solid object below the tube is the trigger microphone. Also visibie are the
circular striations of the Fresnel lens and a few scratches that can be identified by their repetition in the
other shadowgraphs.




The flow field produced by the 120-mm standard brake is shown in F igure 4. The projectile is
again just emerging from the muzzle, so the muzzle plume is still primarily precursor air. However, the
vent plume is more fully established.

For the 120-mm modified brake in Figure 5, the nose of the projectile is just barely visible in the
remnants of the precursor flow at the right. The disturbance is bounded by the precursor shocks formed
by the air flowing from the vents and the muzzle. The vent and muzzle plumes generate strong shock
waves that can be seen interacting near the muzzle exit plane. The resulting structure is called the main
blast wave.

The shadowgraph for the 120-mm side vent design in Figure 6 was taken with the vents placed in
the vertical plane. As a result, the flow from the individual vents is discernible. Note that the boundary
of the plume upstream of the vents is well separated from the tube. This may aiso be true of the
axisymmetric brakes, but their plumes obscure this feature.

Shadowgraphs of the upstream half of the 105-mm standard and elliptic brakes are shown in
Figures 7 and 8, respectively. The semicircular objects at the left are the pressure transducer fixtures
at 150 and 165 degrees. The flow from the standard brake, which has twelve vents around the tube
circumference, approximates an axisymmetric field in the sense that the shocks from the individual
vents have merged to form a single blast wave. The flow field for the elliptic brake, with only six vents
around the circumference, remains three-dimensional.

A shadowgraph of the bare muzzle flow field at a later instant is shown in Figure 9. The
precursor shock is barely visible. Note that the main blast wave, which intersects the tube just upstream of
the transition in diameter, is weakest near the barrel and gets progressively stronger toward the muzzle.
This contrasts sharply with the more uniform strength of the main blast wave for the 120-mm standard and
modified brakes in Figures 10 and 11. The shock for 120-mm side vent design in Figure 12 appears to be
somewhat weaker near the tube, however.

The shadowgraphs in Figures 13 and 14 make an interesting comparison in that the aumerous
weak waves produced by the elliptic design coalesce near the tube to produce a shock whose strength
appears 1o be comparable to the one produced by the standard brake. The data in the next section
quantify these observations.

FREE-FIELD OVERPRESSURE DATA

Seven pressure transducers were used for each shot, placed at angles of 15, 30, 60, 90, 120, 150,
and 165 degrees with respect to the line of fire and at a radius of 30 calibers from the muzzie. The
pressure histories for the bare muzzle extension and the 105-mm standard brake are givea in Appendix B
of Reference 21. The remainder may be found in Appendix B of this report.

The peak overpressure data for the main blast wave are summarized in Figure 15 for the 120-mm
brakes and Figure 16 for the 105-mm designs. The symbols represent the average peak value of the
information in Appendix B. The minimum and maximum values are indicated by the flags in those cases
where the data spread exceeds the size of the symbol. The principal effect of venting is seen to be the
generation of a more uniform blast field around the cannon. The disturbance is diminished somewhat
downstream of the muzzie but considerably strengthened upstream.

To make the comparison easier, all of the brake data are replotted in Figure 17. The ordinate
represents the increase in overpressure relative to the bare muzzle case, expressed in decibels, or




decibel increase = 20 log, [(P,, P)/(Pp,.~P,)] (8)

The quantity in brackets is simply the overpressure ratio defined by Eq. (5). The decibel scale is used
because it is a universally accepted way of measuring blast. The efficiencies are also reproduced in the
figure following the brake name.

The comparison in Figure 17a shows that raking the vents back by ten degrees increased the blast
levels upstream slightly, which is usually the price paid for an improvement in efficiency. The side vent
design in Figure 17b produced an even more pronounced increase, but this is due more to the fact that the
transducers were located in the same plane as the vents than to the small improvement in efficiency. The
slight decrease at the 165-degree location is consistent with the appearance of the shock in the
shadowgraph of Figure 12. Baur and Schmidt (ref 11) found similar results when they compared the
pressure distributions around three-dimensional and equivalent axisymmetric versions of baffle brakes
when the gages were in the plane of the vents.

The results in Figure 17c show that the elliptic design produced lower blast levels than the
standard brake, except near the tube. This is consistent with the shadowgraph in Figure 14 which shows
that the flow field for the elliptic brake consists of several weak shocks that coalesce near the tube 10
produce a strong shock. With comparable shock strengths near the tube and lower efficiency, there is no
incentive to use this design in place of the standard brake.

The two standard brakes are compared in Figure 17d. This makes sense only because both are
20-mm models. The 105-mm design, having the larger vent area ratio, produced somewhat higher blast
levels. Perhaps the difference would have been greater, commensurate the improvement in efficiency, if
the vents in the 120-mm brake were located at the muzzle instead of farther upstream (see Figure 1).

The laboratory resuits are compared with the 105-mm fieid data in Figure 18 and the 120-mm
data in Figure 19. The bare muzzle data reported by Plostins and Clay (ref 1) were used to construct
Figure 18. These authors did not report overpressure data for the particular 105-mm brake configuration
discussed here.

The field data show good agreement with each other, particularly since the individual rounds are
ballistically quite different. This supports the use of the overpressure ratio as a scaling parameter.
However, the 20-mm data fall below the full-scale results at the upsiream locations for all but the 120-mm
side vent design. This suggests that there may be a ground effect present in the field experiments. For
the axisymmetric brakes, the gas vented toward the ground may be deflected upstream and limit the
expansion process in the air compressed by the blast wave. With the side vent design, the ground would
not be an inhibiting factor, and the laboratory arrangement would better approximate the field
experiments. At this point, rather than conclude that the laboratory experiments are a poor simulation of
field experiments or that the overpressure ratio is an inadequate scaling parameter, a 20-mm program
should be conducted that includes tests with and without a ground plane. Both the shadowgraph and
pressure data would be helpful in assessing its importance.

CONCLUSIONS

The gasdynamic efficiencies measured in the laboratory show good agreement with previous
20-mm results, fair agreement with the 105-mm experiments, and poor agreement with the 120-mm resuits.
An instrumentation problem is suspected in the latter case. The results also compare well with predictions
obtained from the impulse code (ref 19) used at Benet to design perforated brakes. There seems little

8




reason 10 question the use of the code for this purpose. What would be desirable is a direct measurement
of the transient axial load produced by a brake.

The field data for the different rounds scaled well using the overpressure parameter. However,
the 20-mm data fall below the full-scale results at the upstream locations for all but the 120-mm side
vent design. This suggests that there may be a ground effect present in the field experiments. A 20-mm
program that includes tests with and without a ground plane would be helpful in assessing its
importance.
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Figure 1. Sketch of the six extensions used in the experiments.
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APPENDIX A
This appendix contains scaled drawings of the six extensions used in the experiments. Note that

the dimensions are in English units, not metric units as used elsewhere in this report. Each extension was
the same length.
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APPENDIX B

The data presented in this appendix were obtained in conjunction with a blast reduction study
reported elsewhere (ref 21). Fifty-nine rounds were fired in the program, forty-nine of which pertain to
this study. The remaining ten rounds refer to a special brake with a split vent pattern. The pressure
histories and shadowgraphs for the bare muzzle case and the 105-mm standard brake are given in
Appendix B of Reference 21 and are not repeated here.

For each round, a set of pressure histories is given on the left-hand page, and the corresponding
shadowgraph is given on the right-hand page. In some cases, data at one or more of the transducer
locations is missing, in others, the shadowgraph is missing. When constructing the overpressure piots in
Figures 24 through 28 of the report, only those rounds for which data were available at every transducer
location were used. To avoid confusion, the data used in the report is specified in the figure captions.

Seven pressure histories were recorded for each shot. Zero time corresponds approximately to the
instant the projectile leaves the barrel. The ordinate of each sub-grid represents overpressure
(pressure above atmospheric pressure) measured in atmospheres. Also indicated are the transducer
location and maximum pressure of the main blast wave for each trace.
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APPENDIX C

The data presented in this appendix were obtained in conjunction with a blast reduction study
reported elsewhere (ref 21). Fifty-nine rounds were fired in the program, forty-nine of which pertain to
this study. The remaining ten rounds refer to a special brake with a split vent pattern. The 'missing
round identifiers’ in Table C1 below are associated with that brake.

The projectile velocity was measured by a pair of light stations placed downstieam which produced
an average value 4.6 m from the muzzle. The cannon recoiled freely in the experiment, and the impulse
was determined from its mass and terminal velocity.

Table C1. Measured Velocity and Impulse Data

Round Extension Velocity Impulse
{m/sec) {nt-sec)
19530 bare muzzle 1060.1 150.1
19531 bare muzzle 1055.5 151.5
19532 bare muzzle 1065.3 153.8
19533 bare muzzle 1051.0 -
19534 120-mm standard 1060.1 128.0
19535 120-mm standard 1058.9 126.5
19536 120-mm standard 1057.4 125.9
19537 120-mm modified 1060.4 125.1
19538 120-mm modified 1060.1 125.1
19539 120-mm modified 1056.4 124.6
19540 120-mm side vent 1058.9 125.5
19541 120-mm side vent 1060.7 125.5
19542 120-mm side vent 1056.4 125.1
19543 105-mm standard 1060.7 122.1
19544 105-mm standard 1060.7 123.0
19545 105-mm standard 1061.0 123.6
19546 105-mm elliptic 1058.0 123.2
19547 105-mm elliptic 1062.8 123.6
19548 105-mm elliptic 1060.4 123.0
19552 bare muzzie 1058.3 149.9
19553 bare muzzle 1058.0 150.5
e S I, w——— vt
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Table C1. Continued

e e NSRS
Round Extension Velocity Impulse
(m/sec) {nt-sec)
19554 bare muzzle 1054.9 150.9
19555 bare muzzle 1058.9 1511
| 19556 bare muzzle 1056.1 149.9
* 19557 120-mm standard 1059.8 125.9
19558 120-mm standard 1058.3 125.9
19559 120-mm standard 1062.8 127.1
19560 120-mm modified 1055.2 1242
19561 120-mm modified 1056.7 123.8
19562 120-mm modified 1049.7 123.0
19563 120-mm side vent 1060.1 127.7
19564 120-mm side vent 1060.4 125.1
19565 120-mm side vent 1058.0 124.7
19566 105-mm standard 1060.4 121.1
19567 105-mm staudard 1066.2 119.0
19568 105-mm standard 1056.1 -
19569 105-mm standard 1061.6 1203
19570 105-mm elliptic 1056.1 122.5
19571 105-mm elliptic 1068.9 124.4
19572 105-mm elliptic 1065.0 120.7
19576 bare muzzie 1055.5 148.8
19577 bare muzzle 1065.0 149.7
19578 bare muzzle 1061.6 149.1
19579 105-mm standard 1057.0 121.1
19580 105-mm standard 1061.0 121.8
19583 bare muzzle 1062.2 149.9
19584 bare muzzle 1065.3 150.1
19585 105-mm standard 1055.5 1213
L 19586 105-mm standard 1056.4 120.7
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The data in Table C1 were numerically averaged to give the results in Tables C2 and C3 along
with the maximum and minimum deviations from the averages. The impulses were not reported for
rounds 19533 (bare muzzle) and 19568 (105-mm standard brake), which accounts for the smaller number

of rounds in Table C3.

Table C2. Averaged Velocity Data

w —
Extension Number of Velocity + Dev - Dev
Rouads {m/sec) (m/sec) (mysec)
bare muzzle 14 1059.1 6.2 -8.2
120-mm standard 6 1059.5 33 2.2
120-mm modified 6 1056.4 4.0 -6.7
120-mm side vent 6 1059.1 1.6 -2.6
105-mm standard 11 1059.7 6.5 -4.2
105-mm etliptic 6 1061.9 7.1 -5.7
- e o
Table C3. Aver. ged Impulise Data
e e
Extension Number of [mpuise + Dev - Dev B
Rounds (nt-sec) (nt-sec) (nt-sec)
bare muzzie 13 150.4 34 -1.6 -
120-mm standard 6 126.5 1.5 0.7 51.1
120-mm modified 6 124.3 0.8 -1.3 559
120-mm side vent 6 125.6 2.0 -0.9 53.0
105-mm standard 10 121.4 22 -2.4 62.1
105-mm elliptic 6 122.9 1.5 2.2 58.9
—— ——
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